Differential Pressure Flow/Level Measurement

Seminar Presented by
David W. Spitzer
Spitzer and Boyes, LLC
$+1.845 .623 .1830$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Copyright

- This document may be viewed and printed for personal use only.
- No part of this document may be copied, reproduced, transmitted, or disseminated in any electronic or nonelectronic format without written permission.
- All rights are reserved.

Copperhill and Pointer, Inc.

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclaimer

The information presented in this document is for the general education of the reader. Because neither the author nor the publisher have control over the use of the information by the reader, both the author and publisher disclaim any and all liability of any kind arising out of such use. The reader is expected to exercise sound professional judgment in using any of the information presented in a particular application. Spitzer and Boyes, LLC
Copperhill and Pointer, Inc Seminar Presenter

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclaimer

- The full and complete contents of this document are for general information or use purposes only. The contents are provided "as is" without warranties of any kind, either expressed or implied, as to the quality, accuracy, timeliness, completeness, or fitness for a general, intended or particular purpose. No warranty or guaranty is made as to the results that may be obtained from the use of this document. The contents of this document are "works in progress" that will be revised from time to time.

Spitzer and Boyes, LLC
Copperhill and Pointer, Inc
Seminar Presenter

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclaimer

- Spitzer and Boyes, LLC and Copperhill and Pointer, Inc. have no liability whatsoever for consequences of any actions resulting from or based upon information in and findings of this document. In no event, including negligence, will Spitzer and Boyes, LLC or Copperhill and Pointer, Inc. be liable for any damages whatsoever, including, without limitation, incidental, consequential, or indirect damages, or loss of business profits, arising in contract, tort or other theory from any use or inability to use this document.
Spitzer and Boyes, LLC

Copperhill and Pointer, Inc.
Seminar Presenter
sitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclaimer

The user of this document agrees to defend, indemnify and hold harmless Spitzer and Boyes, LLC and Copperhill and Pointer, Inc., its employees, contractors, officers, directors and agents against all liabilities, claims and expenses, including attorney's fees, that arise from the use of this document.
Spitzer and Boyes, LLC

Copperhill and Pointer, Inc.
Seminar Presenter

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disclaimer

- The content of this seminar was developed in an impartial manner from information provided by suppliers
- Discrepancies noted and brought to the attention of the editors will be corrected
- We do not endorse, favor, or disfavor any particular supplier or their equipment

Spitzer and Boyes, LLC
Copperhill and Pointer, Inc.
Seminar Presenter
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seminar Outline

- Introduction

- Fluid Properties
- Differential Pressure Flowmeters
- Differential Pressure Level Transmitters
- Consumer Guide

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Measure Flow and Level?

\qquad
\qquad
\qquad information about the process

- The information that is needed depends on the process \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Measure Flow and Level?

\qquad
\qquad

- Monitor the process
- Flow and level measurements can be used to ensure that the process is operating satisfactorily
\qquad
\qquad
\qquad
\qquad
\qquad

Why Measure Flow and Level?
\qquad
\qquad

- Improve the process
- Flow and level measurements can be used for heat and material balance calculations that can be used to improve the process

\qquad
\qquad
\qquad
\qquad
\qquad

Why Measure Flow and Level?
\qquad
\qquad

- Monitor a safety parameter
- Flow and level measurements can be used to ensure that critical portions of the process operate safely
- Over/under feed
- Over/under flow

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature

- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Temperature

- Absolute temperature scales are relative to absolute zero temperature
- Absolute zero temperature $=0 \mathrm{~K}\left(0^{\circ} \mathrm{R}\right)$
- Kelvin $={ }^{\circ} \mathrm{C}+273$
- ${ }^{\circ}$ Rankin $={ }^{\circ} \mathrm{F}+460$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Temperature

Problem

- The temperature of a process increases from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. For the purposes of flow measurement, by what percentage has the temperature increased?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Temperature

- It is tempting to answer that the temperature tripled (60/20), but the ratio of the absolute temperatures is important for flow measurement
- $(60+273) /(20+273)=1.137$
- 13.7% increase

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pressure

- Pressure is defined as the ratio of a force divided by the area over which it is exerted $(P=F / A)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pressure

Problem

- What is the pressure exerted on a table by a 2 inch cube weighing 5 pounds?
- (5 lb$) /\left(4\right.$ inch $\left.{ }^{2}\right)=1.25 \mathrm{lb} / \mathrm{in}^{2}$
- If the cube were balanced on a 0.1 inch diameter rod, the pressure on the table would be $636 \mathrm{lb} / \mathrm{in}^{2}$

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pressure

- Removing gas from a container lowers the pressure in the container
- If all gas is removed, absolute zero pressure (full vacuum) is reached at approximately -1.01325 bar (-14.696 psig)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pressure

- Absolute pressure scales are relative to absolute zero pressure
- Absolute zero pressure
- Full vacuum = 0 bar abs (0 psia)
- bar abs = bar + 1.01325
- psia = psig + 14.696

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pressure

Problem

- The pressure of a process increases from 1 bar to 3 bar. For the purposes of flow measurement, by what percentage has the pressure increased?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

[^0]Spitzer and Boyes, LLC (+1.845 .623 .1830
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Flow

$Q=A \cdot v$

- Q is the volumetric flow rate
- A is the cross-sectional area of the pipe
- v is the average velocity of the fluid in the pipe

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Flow

- Typical Volumetric Flow Units $(Q=A \cdot v)$
- $f t^{2} \cdot f t / \mathrm{sec}=f t^{3} / \mathrm{sec}$ \qquad
- $m^{2} \cdot \mathrm{~m} / \mathrm{sec}=m^{3} / \mathrm{sec}$
- gallons per minute (gpm)
- liters per minute (lpm)
- cubic centimeters per minute (ccm)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Flow

- $W=\rho \cdot Q$
- W is the mass flow rate
- ρ is the fluid density
- Q is the volumetric flow rate

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Flow

- Typical Mass Flow Units $(W=\rho \cdot Q)$
- $l b / f t^{3} \cdot f t^{3} / \mathrm{sec}=l b / \mathrm{sec}$
- $\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~m}^{3} / \mathrm{sec}=\mathrm{kg} / \mathrm{sec}$
- standard cubic feet per minute (scfm)
- standard liters per minute (slpm)
- standard cubic centimeters per minute(sccm)

Spiter and Boyes, LLC ($+1.845,623.1830$) Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Flow

- $Q=A \cdot v$
- $W=\rho \cdot Q$
- Q volumetric flow rate
- W mass flow rate
- $v \quad$ fluid velocity
- $1 / 2 \rho v^{2}$ inferential flow rate

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties
\qquad
\qquad

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
\qquad
\qquad
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spizer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad

Inside Pipe Diameter

- The inside pipe diameter (ID) is important for flow measurement
- Pipes of the same size have the same outside diameter (OD)
- Welding considerations
- Pipe wall thickness, and hence its ID, is determined by its schedule

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inside Pipe Diameter

- Pipe wall thickness increases with increasing pipe schedule
- Schedule 40 pipes are considered "standard" wall thickness
- Schedule 5 pipes have thin walls
- Schedule 160 pipes have thick walls

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inside Pipe Diameter

Nominal pipe size

- For pipe sizes 12-inch and smaller, the nominal pipe size is the approximate ID of a Schedule 40 pipe
- For pipe sizes 14-inch and larger, the nominal pipe size is the $O D$ of the pipe

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena
$\begin{gathered}\text { Spitzer and Boyes, LLC (}+1.845 .623 .1830 \text {) }\end{gathered}$
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Viscosity

- Viscosity is the ability of the fluid to flow over itself
- Units
- $c P, c S t$
- Saybolt Universal (at $100^{\circ} \mathrm{F}, 210^{\circ} \mathrm{F}$)
- Saybolt Furol (at $122^{\circ} \mathrm{F}, 210^{\circ} \mathrm{F}$)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Viscosity

\qquad
\qquad
\qquad dependent

- Water
- Honey at $40^{\circ} \mathrm{F}, 80^{\circ} \mathrm{F}$, and $120^{\circ} \mathrm{F}$
- Peanut butter

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved) \qquad

Velocity Profile and Reynolds Number

- Reynolds number is the ratio of inertial forces to viscous forces in the flowing stream
- $R_{D}=3160 \bullet Q_{g p m} \cdot S G /\left(\mu_{c P} \cdot D_{i n}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Velocity Profile and

 Reynolds Number- Reynolds number can be used as an indication of how the fluid is flowing in the pipe
- Flow regimes based on R_{D}
- Laminar <2000
- Transitional 2000-4000
- Turbulent >4000

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Velocity Profile and
 Reynolds Number

- Turbulent Flow Regime
- Molecules migrate throughout pipe

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Velocity Profile and
 Reynolds Number

- Many flowmeters require a good velocity profile to operate accurately
- Obstructions in the piping system can distort the velocity profile
- Elbows, tees, fittings, valves

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Velocity Profile and Reynolds Number

- Good velocity profiles can be developed
- Straight run upstream and downstream
- No fittings or valves
- Upstream is usually longer and more important
- Flow conditioner
- Locate control valve downstream of flowmeter

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Properties

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hydraulic Phenomena

Vapor pressure is defined as the pressure at which a liquid and its vapor can exist in equilibrium

- The vapor pressure of water at $100^{\circ} \mathrm{C}$ is atmospheric pressure (1.01325 bar abs) because water and steam can coexist

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hydraulic Phenomena

- A superheated vapor is a saturated vapor that is at a higher temperature than its saturation temperature
- Steam at atmospheric pressure that is at $150^{\circ} \mathrm{C}$ is a superheated vapor with $50^{\circ} \mathrm{C}$ of superheat

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hydraulic Phenomena

- Flashing is the formation of gas (bubbles) in a liquid after the pressure of the liquid falls below its vapor pressure

\qquad
\qquad
\qquad
\qquad
- Reducing the pressure of water at $100^{\circ} \mathrm{C}$ below atmospheric pressure (say 0.7 bar abs) will cause the water to boil

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad

Hydraulic Phenomena

- Cavitation is the formation and subsequent collapse of gas (bubbles) in a liquid after the pressure of the liquid falls below and then rises above its vapor pressure
- Can cause severe damage in pumps and valves
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seminar Outline

- Introduction
- Fluid Properties
- Differential Pressure Flowmeters
- Differential Pressure Level Transmitters
- Consumer Guide

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- A piping restriction is used to develop a pressure drop that is measured and used to infer fluid flow
- Primary Flow Element
- Transmitter (differential pressure)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Bernoulli's equation states that energy is approximately conserved across a constriction in a pipe
- Static energy (pressure head)
- Kinetic energy (velocity head)
- Potential energy (elevation head)

Spitzer and Boyes, LLC (+1.845 .623 .1830
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Equation of Continuity
- $Q=A \cdot v$
$Q=$ flow (volumetric)
A $=$ cross-sectional area
$v=$ fluid velocity (average)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation
\qquad
\qquad
\qquad Bernoulli's equation for flow in a horizontal pipe

- Acceleration of gravity is constant
- No elevation change

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Solve for the pressure difference and use the equation of continuity
- $\left(P_{1}-P_{2}\right)=1 / 2 \rho \cdot v_{2}^{2}-1 / 2 \rho \cdot v_{1}^{2}$
$=1 / 2 \rho\left[v_{2}{ }^{2}-v_{1}^{2}\right]$
$=1 / 2 \rho\left[\left(A_{l} / A_{2}\right)^{2}-1\right] \cdot v_{1}{ }^{2}$
$=1 / 2 \rho\left[\left(A_{1} / A_{2}\right)^{2}-1\right] \cdot Q^{2} / A_{1}^{2}$
$=$ constant $\cdot \rho \cdot Q^{2}$
Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Q is proportional to $1 / \rho^{1 / 2}$
- Fluid density affects the measurement by approximately $-1 / 2 \%$ per $\%$ density change

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Liquid density changes are usually small

- Gas and vapor density changes can be large and may need compensation for accurate flow measurement
- Flow computers
- Multivariable differential pressure transmitters

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Problem

- What is the effect on a differential pressure flowmeter when the operating pressure of a gas is increased from 6 to 7 bar?
- To simplify calculations, assume that atmospheric pressure is 1 bar abs

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- The ratio of the densities is $(7+1) /(6+1)$ = 1.14
- The density of the gas increased 14 percent
- The flow measurement is proportional to the inverse of the square root of the density which is $(1 / 1.14)^{1 / 2}=0.94$
- The flow measurement will be approximately 6 percent low

$$
\begin{gathered}
\text { Spitzer and Boyes, LLC (+1.845.623.1830) } \\
\text { Copyright Copperhill and Pointer, Inc., } 2006 \text { (All Rights Reserved) } \\
\hline
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Problem

- Calculate the differential pressures produced at various percentages of full scale flow
- Assume 0-100\% flow corresponds to 0-100 differential pressure units

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Differential pressure as a function of flow

$\underline{\text { Flow }}$			
100			
50%	100	$d p$	units
20%	25	$"$	$"$
10%	4	$"$	$"$
	1	$"$	$"$

Spitzer and Boyes, LLC (+1.845 .623 .1830) Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Low flow measurement can be difficult
- For example, only $1 / 4$ of the differential pressure is generated at 50 percent of the full scale flow rate. At 10 percent flow, the signal is only 1 percent of the differential pressure at full scale.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Problem

- What is the differential pressure turndown for a 10:1 flow range?
- $0.1^{2}=0.01$, so at 10% flow the differential pressure is 1/100 of the differential pressure at 100% flow
- The differential pressure turndown is 100:1

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Noise can create problems at low flow rates
- 0-10\% flow corresponds to 0-1 dp units
- $90-100 \%$ flow corresponds to $81-100 \%$ dp units

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

- Noise at low flow rates can be reduced by low flow characterization
- Force to zero
- Linear relationship at low flow rates

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

\qquad
\qquad

- Square root relationship generally applies when operating above the Reynolds number constraint for the primary flow element
- Operating below the constraint causes the flow equation to become linear with differential pressure (and viscosity)
- Applying the incorrect equation will result in flow measurement error

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Problem

- If the Reynolds number at 100% flow is 10,000, what is the turndown for accurate measurement if the primary flow element must operate in the turbulent flow regime?
- 10,000/4000, or 2.5:1

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

Problem

- Will the flowmeter operate at 10% flow?
- It will create a differential pressure... however, Reynolds number will be below the constraint, so the flow measurement will not conform to the square root equation (and will not be accurate)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

Flowmeters

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Manifold Designs
- Installation
- Accessories
- Performance

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

Flowmeters

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Manifold Designs
- Installation
- Accessories
- Performance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

Sensor Designs

- Capacitance
- Differential Transformer
- Force Balance
- Piezoelectric
- Potentiometer
- Silicon Resonance
- Strain Gage

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure
Transmitter Designs

- Analog
- Electrical components subject to drift
- Ambient temperature
- Process temperature
- Two-wire design

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure
Transmitter Designs

- Digital
- Microprocessor is less susceptible to drift
- Ambient temperature
- Process temperature
- Temperature characterization in software
- Remote communication (with HART)
- Two-wire design

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure
 Transmitter Designs

- Fieldbus

- Microprocessor is less susceptible to drift
- Ambient temperature
- Process temperature
- Temperature characterization in software
- Remote communication
- Issues with multiple protocols
- Multi-drop wiring
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

 Transmitter Designs- Mechanical design
- Spacing between connections
- Orifice flange taps
- Traditional
- Larger diaphragm/housing
- Coplanar
- Smaller diaphragm/housing

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure
Transmitter Designs

- High static pressure design
- Typically lower performance
- Safety design
- Automatic diagnostics
- Redundancy
- Reliable components

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

 Multi-Valve Manifold Designs- Multi-valve manifolds are used to isolate the transmitter from service for maintenance and calibration
- One-piece integral assembly
- Mounted on transmitter

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

Flowmeters

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Manifold Designs
- Installation
- Accessories
- Performance

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Operation

The quality of measurement is predicated on:

- Proper installation of the primary flow element
- Proper operation of the primary flow element (for example, Reynolds number)
- Accurate measurement of the differential pressure

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Characteristics

- Reynolds number within constraints
- Fluid must not plug impulse tubing
- Solids
- Purge fluids
- Diaphragm seals (added measurement error)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fluid Characteristics
\qquad
\qquad
\qquad
\qquad

- Exotic (thin) diaphragm materials
- Coating
- Gas in liquid stream
- Immiscible fluids

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

- Within accurate flow range
- Corrosion and erosion
- Flowmeter
-

 \qquad

Piping and Hydraulics

- For liquids, keep flowmeter full
- Hydraulic design
- Vertical riser preferred
- Avoid inverted U-tube
- Be careful when flowing by gravity

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Piping and Hydraulics

- For gases, avoid accumulation of liquid
- Hydraulic design
- Vertical riser preferred
- Avoid U-tube

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Piping and Hydraulics

- Maintain good velocity profile
- Locate control valve downstream of flowmeter
- Provide adequate straight run
- Locate most straight run upstream
- Install flow conditioner
- Use full face gaskets

Spitzer and Boyes, LLC (+1.845 .623 .1830)

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Impulse Tubing

- Liquids avoid collection of gas
- Gas avoid collection of liquid
- Vapor form condensate legs
- Hot locate transmitter far from taps
- Cold insulate and/or heat trace
- Cryogenic Liquids - avoid condensation and collection of liquid
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Electrical

- Wiring
- Two-wire design (no power conduit)
- Fieldbus reduces wiring
- Avoid areas of electrical noise
- Radios
- High voltages
- Variable speed drives

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ambient Conditions

\qquad
\qquad

- Outdoor applications (-40 to $80^{\circ} \mathrm{C}$)
- Avoid direct sunlight (especially low ranges)
- Support transmitter well
- Hazardous locations
- Some designs may be general purpose

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calibration

- Internal alignment (digital transmitters)
- Pressure source
- Digital indication in transmitter
- Digital output indication in transmitter
- Analog signal

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Accessories

Transmitter

- NEMA $4 X$ and IP67 (IP68)
- Hazardous locations
- Intrinsically safe
- HART, Foundation Fieldbus, Profibus
- Mounting bracket

Sitzer and Boyes, LLC (+1 . $845,623.1830$) Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure

\qquad
Flowmeters

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Manifold Designs
- Installation
- Accessories
- Performance

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

- Accuracy is the ability of the flowmeter to produce a measurement that corresponds to its characteristic curve
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

\qquad
\qquad
\qquad flowmeter to reproduce a measurement each time a set of conditions is repeated \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

- Linearity is the ability of the relationship between flow and flowmeter output (often called the characteristic curve or signature of the flowmeter) to approximate a linear relationship

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

- Flowmeter suppliers often specify the composite accuracy that represents the combined effects of repeatability, linearity and accuracy

Sitzer and Boyes, LLC (+1.845.623.1830) Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flowmeter Performance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- 1% of rate performance at different flow rates with a 0-100 unit flow range
- 100% flow $\rightarrow 0.01 \cdot 100 \quad 1.00$ unit
- 50% flow $\rightarrow 0.01 \cdot 50 \quad 0.50$ unit
- 25% flow $\rightarrow 0.01 \cdot 25 \quad 0.25$ unit
- 10% flow $\rightarrow 0.01 \cdot 10 \quad 0.10$ unit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- 1% of full scale performance at different flow rates with a 0-100 unit flow range
- 100% flow $\rightarrow 0.01 \cdot 100 \quad 1$ unit $=1 \%$ rate
- 50% flow $\rightarrow 0.01 \cdot 100 \quad 1$ unit $=2 \%$ rate
- 25% flow $\rightarrow 0.01 \cdot 100 \quad 1$ unit $=4 \%$ rate
- 10% flow $\rightarrow 0.01 \cdot 100 \quad 1$ unit $=10 \%$ rate

Spitzer and Boyes, LLC (+1 .845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- 1% of meter capacity (or upper range limit) performance at different flow rates with a 0-100 unit flow range (URL=400)
- 100% flow $\rightarrow 0.01 \cdot 400 \quad 4$ units $=4 \%$ rate
- 50% flow $\rightarrow 0.01 \cdot 400 \quad 4$ units $=8 \%$ rate
- 25% flow $\rightarrow 0.01 \cdot 400 \quad 4$ units $=16 \%$ rate
- 10% flow $\rightarrow 0.01 \cdot 400 \quad 4$ units $=40 \%$ rate
pitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- Performance expressed as a percent of calibrated span is similar to full scale and meter capacity statements where the absolute error is a percentage of the calibrated span

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- 1% of calibrated span performance at different flow rates with a 0-100 unit flow range $(U R L=400$, calibrated span $=200$)
- 100% flow $\rightarrow 0.01 \cdot 200 \quad 2$ units $=2 \%$ rate
- 50% flow $\rightarrow 0.01 \cdot 200 \quad 2$ units $=4 \%$ rate
- 25% flow $\rightarrow 0.01 \cdot 200 \quad 2$ units $=8 \%$ rate
- 10% flow $\rightarrow 0.01 \cdot 200 \quad 2$ units $=20 \%$ rate

Spizer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Statements

- Performance statements can be manipulated because their meaning may not be clearly understood
- Technical assistance may be needed to analyze the statements

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference Performance

- Reference performance is the quality of measurement at a nominal set of operating conditions, such as:
- Water at $20^{\circ} \mathrm{C}$ in ambient conditions of $20^{\circ} \mathrm{C}$ and 50 percent relative humidity
- Long straight run
- Pulse output

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference Performance
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference Performance

- The calibrated span is 400, so the differential pressure measurement error is 0.10% of 400 , or 0.4 units at all differential pressures

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference Performance

Problem

- What is the flow measurement error associated with the performance of the flow measurement system (primary flow element and differential pressure transmitter)?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference Performance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Actual Performance

Operating Effects

- Ambient conditions
- Humidity
- Precipitation
- Temperature
- Pressure
- Direct sunlight
- Mounting Orientation
- Stability (Drift)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Actual Performance

- Ambient Humidity and Precipitation
- Many flowmeters are rated to $10-90 \%$ relative humidity (non-condensing)
- Outdoor locations are subject to 100\% relative humidity and precipitation in various forms

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spizer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Actual Performance

- Ambient Temperature and Pressure
- Information available to evaluate actual performance
- Temperature effect
- Pressure effect
- Effects can be significant, even though the numbers seem small

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Actual Performance

Example

- The error (at 25 percent of scale and a $0^{\circ} \mathrm{C}$ ambient) associated with a temperature effect of 0.01% full scale per ${ }^{\circ} \mathrm{C}$ can be calculated as:
- $0.01 *(20-0) / 25$, or 0.80% rate
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Actual Performance

- Reference accuracy performance statements are often discussed
- Operating effects, such as temperature and pressure effects are often only mentioned with prompting
- Progressive disclosure

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

 Transmitters
- Liquid Pressure

- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

\qquad Transmitters

- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Static Liquid Interface

Static liquid interface tends to be perpendicular to direction of gravity

- Level identical across vessel
- One level measurement can be representative of level in entire vessel

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level Transmitters

- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Related Quantities
- Level
- Volume
- Mass

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Typical Units ($m=\rho \cdot V$)
- $l b / f t^{3} \cdot f t^{3}=l b$
- $\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~m}^{3}=\mathrm{kg}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Volume of material in vessel
- Round vertical flat bottom tank $V=1 / 4 \cdot \pi \cdot D^{2} \cdot H$
- Dish / cone
- Horizontal tank

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

Problem

- What is the inferred volume of liquid in a round vertical flat bottom tank that is 2 meters in diameter when the liquid level is measured to be 4 meters above the bottom?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

Problem

- What is the level of liquid with a density of $0.9 \mathrm{~g} / \mathrm{cm}^{3}$ in a round vertical flat bottom tank that is 2 meters in diameter when the pressure at the bottom of the tank is 4 meters of water column?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Calculate the inferred level
- Noting that 1 meter of liquid is generates the same pressure as 0.9 meters of water (WC)
$H=4 \mathrm{mWC} \cdot(1 \mathrm{~m}$ liquid $/ 0.9 \mathrm{mWC})$
$=4.44$ meters
$\begin{gathered}\text { Spitzer and Boyes, LLC (}+1.845 .623 .1830 \text {) }\end{gathered}$
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Inferred volume measurement
- Measure mass of material
- Use material properties (density / bulk density) to calculate volume

$$
V=m / \rho
$$

$\left.\begin{array}{c}\text { Spitzer and Boyes, LLC (}+1.845 .623 .1830 \text {) } \\ \text { Copyright Copperhill and Pointer, Inc., } 2006 \text { (All Rights Reserved) }\end{array}\right]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

Problem

- What is the volume of liquid with a density of $0.9 \mathrm{~g} / \mathrm{cm}^{3}$ in a round vertical flat bottom tank that is 2 meters in diameter when the weight of the liquid is 12 MT?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Inferred mass measurement
- Measure level
- Use tank geometry to calculate volume
- Use volume and material properties (density / bulk density) to calculate mass

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Inferred mass measurement
- Calculate volume using tank geometry
- Vertical round flat bottom tank

$$
V=1 / 4 \cdot \pi \cdot D^{2} \cdot H
$$

- Calculate mass using density
- $m=\rho \cdot V$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

Problem

- What is the inferred mass of a liquid with a density of $0.9 \mathrm{~g} / \mathrm{cm}^{3}$ in a round vertical flat bottom tank that is 2 meters in diameter when the liquid level is measured to be 4 meters above the bottom?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Level Measurement

- Calculate the mass of the liquid

$$
\begin{aligned}
m & =\rho \cdot V \\
& =900 \mathrm{~kg} / \mathrm{m}^{3} \cdot 12.57 \mathrm{~m}^{3} \\
& =11313 \mathrm{~kg}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

 Transmitters- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vessel Geometry

- The inside vessel dimensions are important for inferring volume/mass
- Drawings often show outside dimensions
- Wall thickness

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vessel Geometry

- Units of Measurement
- Volume (e.g. 0.55-8.5 m³)
- Advantage - indicates volume of material in vessel
- Disadvantage - amount of material in vessel not indicated

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

Transmitters

- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spitzer and Boyes, LLC (+1.845 .623 .1830)
Spitzer and Boyes, LLC (+1.845 .623 .1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

 Transmitters- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spizer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level Transmitters

- Liquid Pressure
- Static Liquid Interface
- Types of Level Measurement
- Vessel Geometry
- Dynamic Phenomena
- Installation
- Differential Pressure Level Calculations

Spitzer and Boyes, LLC (+1.845.623.1830)
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

Classroom Exercise 1
A vertical cylindrical tank is 10 meters high with a diameter of 3 meters. The tank contains water that overflows 9 meters above its flat bottom. A differential pressure level transmitter is mounted on a tap located 1 meter above the bottom of the tank. Calculate the calibration of the differential pressure level transmitter.
$\begin{gathered}\text { Spitzer and Boyes, LLC (+1.845.623.1830) }\end{gathered}$
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

 Classroom Exercise 2A vertical cylindrical tank rated for 4 bar of pressure and full vacuum is 6 m high. The tank has a diameter of 2 meters and contains a liquid with a specific gravity of 0.95. A differential pressure level transmitter is mounted on a tap located 0.50 meters above the lower tangent line of the tank. The low-pressure nozzle is located 0.50 meters below the upper tangent line of the tank and has a fill fluid with a specific gravity of 1.05 . Calculate the calibration of the differential pressure level transmitter.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

 Classroom Exercise 3A vertical cylindrical tank rated for 4 bar of pressure and full vacuum is 6 m high. The tank has a diameter of 2 meters and contains a liquid with a specific gravity of 0.95. A differential pressure level transmitter is mounted on a tap located 0.50 meters above the lower tangent line of the tank. The low-pressure nozzle is located 0.50 meters below the upper tangent line of the tank and has a fill fluid with a specific gravity of 1.05 . Calculate the calibration of the differential pressure level transmitter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level Classroom Exercise 4

A vertical cylindrical separation tank is 6 m high with a diameter of 2 meters. The tank is used to separate water with a specific gravity of 1.00 from a liquid with a specific gravity of 0.88 that overflows 0.50 meter below the top of the tank. The nozzles for the differential pressure level transmitter with diaphragm seals are located 0.50 meter above and below the middle of the tank. The capillary fill fluid has a specific gravity of 1.05. Assume that the transmitter is located at the same elevation as the lower nozzle. Calculate the calibration of the differential pressure level transmitter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seminar Outline

- Introduction
- Fluid Properties
- Differential Pressure Flowmeters
- Differential Pressure Level Transmitters
- Consumer Guide

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consumer Guide

User Equipment Selection Process

- By providing the first four items, the Consumer Guides:
- allow selection from a larger number of suppliers
- simplifies the overall selection process

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consumer Guide

Supplier Data and Analysis

- Attachments

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level

\qquad Classroom Exercise 1

Empty Tank $H=0 \mathrm{~m}$
$L=0 m$
$\Delta P=H-L=0-0=0 \mathrm{~m}$

Full Tank
$H=(9-1) \bullet 1.0=8 m$
$L=0 \mathrm{~m}$
$\Delta P=H-L=8-0=8 m$

Calibration: 0 to 8 meters WC
Spitzer and Boyes, LLC (+1.845.623.1830)
Spizer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level Classroom Exercise 2

Empty Tank $H=0 \mathrm{~m}$
$L=(5.50-0.50) \bullet 1.05=5.25 \mathrm{~m}$
$\Delta P=H-L=0-5.25=-5.25 \mathrm{~m}$
Full Tank
$H=(5.50-0.50) \bullet 0.95=4.75 \mathrm{~m}$
$L=(5.50-0.50) \bullet 1.05=5.25 \mathrm{~m}$
$\Delta P=H-L=4.75-5.25=-0.50 \mathrm{~m}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Level Classroom Exercise 3

Empty Tank $H=0 m$
$L=(5.50-0.50) \bullet 1.05=5.25 \mathrm{~m}$
$\Delta P=H-L=0-5.25=-5.25 \mathrm{~m}$

Full Tank $\quad H=(5.50-0.50) \bullet 0.95=4.75 \mathrm{~m}$
$L=(5.50-0.50) \bullet 1.05=5.25 \mathrm{~m}$
$\Delta P=H-L=4.75-5.25=-0.50 m$

Calibration: -5.25 to -0.50 meters WC
Spitzer and Boyes, LLC (+1.845.623.1830)

Differential Pressure Level

 Classroom Exercise 4
Zero Interface

$H=(4.00-2.00) \bullet 0.88+(5.50-4.00) \bullet 0.88=3.08 \mathrm{~m}$
$L=(4.00-2.00) \bullet 1.05+(5.50-4.00) \bullet 0.88=3.42 \mathrm{~m}$
$\Delta P=H-L=3.08-3.42=-0.34 \mathrm{~m}$
Full Interface
$H=(4.00-2.00) \bullet 1.00+(5.50-4.00) \bullet 0.88=3.32 \mathrm{~m}$
$L=(4.00-2.00) \bullet 1.05+(5.50-4.00) \bullet 0.88=3.42 \mathrm{~m}$
$\Delta P=H-L=3.32-3.42=-0.10 \mathrm{~m}$
Calibration: -0.34 to -0.10 meters $W C$

Copyright Copperhill and Pointer, Inc., 2006 (All Rights Reserved)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Differential Pressure Flow/Level Measurement

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: - Temperature

 Pressure

 - Density and Fluid Expansion
 - Types of Flow
 - Inside Pipe Diameter
 - Viscosity
 - Reynolds Number and Velocity Profile
 - Hydraulic Phenomena

