The Consumer Guide to Differential Pressure Flow Transmitters

Seminar Presented by David W. Spitzer Spitzer and Boyes, LLC +1.845.623.1830

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Copyright

- This document may be viewed and printed for personal use only.
- No part of this document may be copied, reproduced, transmitted, or disseminated in any electronic or nonelectronic format without written permission.
- All rights are reserved.

Copperhill and Pointer, Inc.

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Disclaimer

The information presented in this document is for the general education of the reader. Because neither the author nor the publisher have control over the use of the information by the reader, both the author and publisher disclaim any and all liability of any kind arising out of such use. The reader is expected to exercise sound professional judgment in using any of the information presented in a particular application.

Spitzer and Boyes, LLC Copperhill and Pointer, Inc. Seminar Presenter

Disclaimer

The full and complete contents of this document are for general information or use purposes only. The contents are provided "as is" without warranties of any kind, either expressed or implied, as to the quality, accuracy, timeliness, completeness, or fitness for a general, intended or particular purpose. No warranty or guaranty is made as to the results that may be obtained from the use of this document. The contents of this document are "works in progress" that will be revised from time to time.

Spitzer and Boyes, LLC Copperhill and Pointer, Inc. Seminar Presenter

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Disclaimer

Spitzer and Boyes, LLC and Copperhill and Pointer, Inc. have no liability whatsoever for consequences of any actions resulting from or based upon information in and findings of this document. In no event, including negligence, will Spitzer and Boyes, LLC or Copperhill and Pointer, Inc. be liable for any damages whatsoever, including, without limitation, incidental, consequential, or indirect damages, or loss of business profits, arising in contract, tort or other theory from any use or inability to use this document.

Spitzer and Boyes, LLC Copperhill and Pointer, Inc. Seminar Presenter

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Disclaimer

The user of this document agrees to defend, indemnify, and hold harmless Spitzer and Boyes, LLC and Copperhill and Pointer, Inc., its employees, contractors, officers, directors and agents against all liabilities, claims and expenses, including attorney's fees, that arise from the use of this document.

Spitzer and Boyes, LLC Copperhill and Pointer, Inc. Seminar Presenter

Disclaimer

- The content of this seminar was developed in an impartial manner from information provided by suppliers
- Discrepancies noted and brought to the attention of the editors will be corrected
- We do not endorse, favor, or disfavor any particular supplier or their equipment

Spitzer and Boyes, LLC Copperhill and Pointer, Inc. Seminar Presenter

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Seminar Outline

- Introduction
- Fluid Flow Fundamentals
- Flowmeter Technology
- Flowmeter Performance
- Consumer Guide

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Introduction

- Working Definition of a Process
- Why Measure Flow?

Working Definition of a Process

• A process is anything that changes

Spitzer and Boyes, LLC (+1.845.623.1830)

Converget Connectial and Pointer Inc. 2004 (All Rights Reserver

Why Measure Flow?

- Flow measurements provide information about the process
- The information that is needed depends on the process

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Why Measure Flow?

- Custody transfer
 - Measurements are often required to determine the total quantity of fluid that passed through the flowmeter for billing purposes

Why Measure Flow?

- Monitor the process
 - Flow measurements can be used to ensure that the process is operating satisfactorily

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperbill and Pointer, Inc. 2004 (All Rights Reserve)

Why Measure Flow?

- *Improve the process*
 - Flow measurements can be used for heat and material balance calculations that can be used to improve the process

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Why Measure Flow?

- Monitor a safety parameter
 - Flow measurements can be used to ensure that critical portions of the process operate safely

Seminar Outline Introduction Fluid Flow Fundamentals Flowmeter Technology Flowmeter Performance Consumer Guide

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer. Inc., 2004 (All Rights Reserved

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

17

Temperature

- Measure of relative hotness/coldness
 - *Water freezes at 0°C (32°F)*
 - *Water boils at 100°C (212°F)*

Temperature

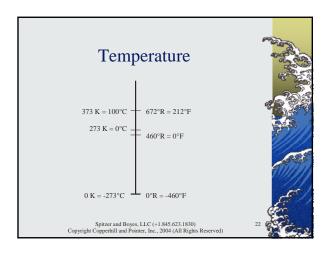
- Removing heat from fluid lowers temperature
 - If all heat is removed, absolute zero temperature is reached at approximately -273°C (-460°F)

Spitzer and Boyes, LLC (+1.845.623.1830)

Convright Connectial and Pointer, Inc. 2004 (All Rights Reserved)

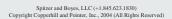
Temperature

- Absolute temperature scales are relative to absolute zero temperature
 - Absolute zero temperature = $0 K (0^{\circ}R)$
 - $Kelvin = {}^{\circ}C + 273$
 - \blacksquare ° Rankin = °F + 460


Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Temperature

<u>Absolute</u> temperature is important for flow measurement



Temperature

Problem

• The temperature of a process increases from 20°C to 60°C. For the purposes of flow measurement, by what percentage has the temperature increased?

23

Temperature

- It is tempting to answer that the temperature tripled (60/20), but the ratio of the <u>absolute</u> temperatures is important for flow measurement
 - (60+273)/(20+273) = 1.137
 - 13.7% increase

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Pressure

 Pressure is defined as the ratio of a force divided by the area over which it is exerted (P=F/A)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Pressure

Problem

- What is the pressure exerted on a table by a 2 inch cube weighing 5 pounds?
 - $(5 lb) / (4 inch^2) = 1.25 lb/in^2$
 - If the cube were balanced on a 0.1 inch diameter rod, the pressure on the table would be 636 lb/in²

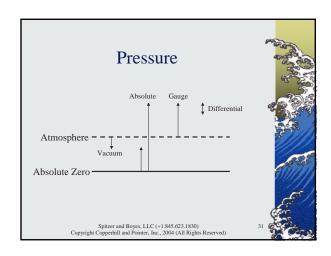
Pressure

- Atmospheric pressure is caused by the force exerted by the atmosphere on the surface of the earth
 - 2.31 feet WC / psi
 - 10.2 meters WC/bar

Spitzer and Boyes, LLC (+1.845.623.1830)

Pressure

- Removing gas from a container lowers the pressure in the container
 - If all gas is removed, absolute zero pressure (full vacuum) is reached at approximately -1.01325 bar (-14.696 psig)



Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Pressure

- Absolute pressure scales are relative to absolute zero pressure
 - *Absolute zero pressure*
 - Full vacuum = 0 bar abs (0 psia)
 - bar abs = bar + 1.01325
 - *psia* = *psig* + 14.696

Pressure

Absolute pressure is important for flow measurement

Pressure

Problem

• The pressure of a process increases from 1 bar to 3 bar. For the purposes of flow measurement, by what percentage has the pressure increased?

Pressure

- It is tempting to answer that the pressure tripled (3/1), but the ratio of the <u>absolute</u> pressures is important for flow measurement
 - (3+1.01325)/(1+1.01325) = 1.993
 - 99.3% increase

Spitzer and Boyes, LLC (+1.845.623.1830)

Converget Connectial and Pointer, Inc. 2004 (All Rights Reserve

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

 Density is defined as the ratio of the mass of a fluid divided its volume (ρ=m/V)

- Specific Gravity of a liquid is the ratio of its operating density to that of water at standard conditions
 - $SG = \rho_{liquid}/\rho_{water\ at\ standard\ conditions}$

Density and Fluid Expansion

Problem

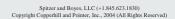
• What is the density of air in a 3.2 ft3 filled cylinder that has a weight of 28.2 and 32.4 pounds before and after filling respectively?

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

- The weight of the air in the empty cylinder is taken into account
 - *Mass* =(32.4-28.2)+(3.2•0.075) = 4.44 lb
 - $Volume = 3.2 \, ft^3$
 - Density = $4.44/3.2 = 1.39 \text{ lb/ft}^3$

- The density of most liquids is nearly unaffected by pressure
- *Expansion of liquids*
 - $V = V_0 (1 + \beta \bullet \Delta T)$
 - $V = new \ volume$
 - $V_0 = old \ volume$
 - β = cubical coefficient of expansion
 - ΔT = temperature change


Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

Problem

• What is the change in density of a liquid caused by a 10°C temperature rise where β is 0.0009 per °C?

Density and Fluid Expansion

- *Calculate the new volume*
 - $V = V_0 (1 + 0.0009 \cdot 10) = 1.009 V_0$
 - The volume of the liquid increased to 1.009 times the old volume, so the new density is (1/1.009) or 0.991 times the old density

- Expansion of solids
 - $V = V_0 (1 + \beta \cdot \Delta T)$
 - where $\beta = 3 \cdot \alpha$
 - $\alpha = linear coefficient of expansion$
- Temperature coefficient
 - Stainless steel temperature coefficient is approximately 0.5% per 100°C

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

Problem

• What is the increase in size of metal caused by a 50°C temperature rise where the metal has a temperature coefficient of 0.5% per 100°C?

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

- Calculate the change in size
 - \bullet (0.5 50) = 0.25%
 - Metals (such as stainless steel) can exhibit significant expansion

- Boyle's Law states the the volume of an ideal gas at constant temperature varies inversely with <u>absolute</u> pressure
 - V = K/P

Spitzer and Boyes, LLC (+1.845.623.1830)

Converget Connectial and Pointer, Inc., 2004 (All Rights Reserve

Density and Fluid Expansion

- New volume can be calculated
 - V = K/P
 - $V_0 = K/P_0$
- Dividing one equation by the other yields
 - $V/V_0 = P_0 / P$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

Problem

• How is the volume of an ideal gas at constant temperature and a pressure of 28 psig affected by a 5 psig pressure increase?

- Calculate the new volume
 - $V/V_0 = (28+14.7) / (28+5+14.7) = 0.895$
 - $V = 0.895 V_0$
 - Volume decreased by 10.5%

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Density and Fluid Expansion

- Charles' Law states the the volume of an ideal gas at constant pressure varies directly with <u>absolute</u> temperature
 - $V = K \bullet T$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

50

Density and Fluid Expansion

- New volume can be calculated
 - $V = K \bullet T$
 - $V_0 = K \bullet T_0$
- Dividing one equation by the other yields
 - $V/V_0 = T/T_0$

Problem

• How is the volume of an ideal gas at constant pressure and a temperature of 15°C affected by a 10°C decrease in temperature?

Spitzer and Boyes, LLC (+1.845.623.1830)

Converget Connectial and Pointer Inc. 2004 (All Rights Reserver

Density and Fluid Expansion

- Calculate the new volume
 - $V/V_0 = (273+15-10) / (273+15) = 0.965$
 - $V = 0.965 V_0$
 - Volume decreased by 3.5%

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

53

Density and Fluid Expansion

- Ideal Gas Law combines Boyle's and Charles' Laws
 - PV = nRT

New volume can be calculated

$$P \bullet V = n \bullet R \bullet T$$

$$\blacksquare P_0 \bullet V_0 = n \bullet R \bullet T_0$$

Dividing one equation by the other yields

•
$$V/V_0 = (P_0/P) \cdot (T/T_0)$$

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserve

Density and Fluid Expansion

Problem

• How is the volume of an ideal gas at affected by a 10.5% decrease in volume due to temperature and a 3.5% decrease in volume due to pressure?

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Density and Fluid Expansion

- Calculate the new volume
 - $V/V_0 = 0.895 \cdot 0.965 = 0.864$
 - $V = 0.864 V_0$
 - Volume decreased by 13.6%

- Non-Ideal Gas Law takes into account non-ideal behavior
 - PV = nRTZ

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperbill and Pointer, Inc. 2004 (All Rights Reserve)

Density and Fluid Expansion

- New volume can be calculated
 - $P \bullet V = n \bullet R \bullet T \bullet Z$
 - $P_0 \bullet V_0 = n \bullet R \bullet T_0 \bullet Z_0$
- Dividing one equation by the other yields
 - $V/V_0 = (P_0/P) \cdot (T/T_0) \cdot (Z/Z_0)$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Types of Flow

- $Q = A \cdot v$
 - *Q* is the volumetric flow rate
 - *A is the cross-sectional area of the pipe*
 - *v* is the average velocity of the fluid in the pipe

Spitzer and Boyes, LLC (+1.845.623.1830)

Types of Flow

- *Typical Volumetric Flow Units*($Q = A \cdot v$)
 - ft^2 $ft/sec = ft^3/sec$
 - $m^2 \cdot m/sec = m^3/sec$
 - gallons per minute (gpm)
 - liters per minute (lpm)
 - cubic centimeters per minute (ccm)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Types of Flow

- $W = \rho \bullet Q$
 - *W* is the mass flow rate
 - ρ is the fluid density
 - lacksquare Q is the volumetric flow rate

Types of Flow

- Typical Mass Flow Units $(W = \rho \cdot Q)$
 - lb/ft^3 $ft^3/sec = lb/sec$
 - kg/m^3 $m^3/sec = kg/sec$
 - standard cubic feet per minute (scfm)
 - standard liters per minute (slpm)
 - standard cubic centimeters per minute(sccm)

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperbill and Pointer, Inc. 2004 (All Rights Reserve)

(m)

Types of Flow

- $Q = A \cdot v$
- $W = \rho \bullet Q$
 - Q volumetric flow rate
 - W mass flow rate
 - v fluid velocity
 - $\frac{1}{2} \rho v^2$ inferential flow rate

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Inside Pipe Diameter

- The <u>inside</u> pipe diameter (ID) is important for flow measurement
 - Pipes of the same size have the same outside diameter (OD)
 - Welding considerations
 - Pipe wall thickness, and hence its ID, is determined by its schedule

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Inside Pipe Diameter

- Pipe wall thickness increases with increasing pipe schedule
 - Schedule 40 pipes are considered "standard" wall thickness
 - Schedule 5 pipes have thin walls
 - Schedule 160 pipes have thick walls

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Inside Pipe Diameter

- Nominal pipe size
 - For pipe sizes 12-inch and smaller, the nominal pipe size is the approximate ID of a Schedule 40 pipe
 - For pipe sizes 14-inch and larger, the nominal pipe size is the OD of the pipe

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Viscosity

- Viscosity is the ability of the fluid to flow over itself
- Units
 - **■** *cP*, *cSt*
 - Saybolt Universal (at 100°F, 210 °F)
 - Saybolt Furol (at 122°F, 210 °F)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Viscosity

- Viscosity can be highly temperature dependent
 - Water
 - *Honey at 40°F, 80°F, and 120°F*
 - Peanut butter

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

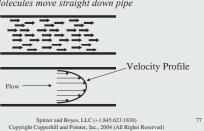
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Velocity Profile and Reynolds Number

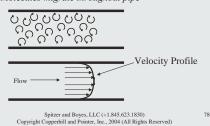
- Reynolds number is the ratio of inertial forces to viscous forces in the flowing stream
 - $R_D = 3160 \cdot Q_{gpm} \cdot SG / (\mu_{cP} \cdot D_{in})$

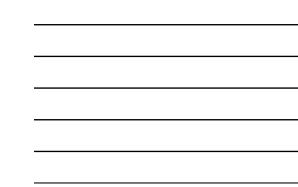
Velocity Profile and Reynolds Number

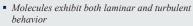
- Reynolds number can be used as an indication of how the fluid is flowing in the pipe
- Flow regimes based on R_D
 - *Laminar* < 2000
 - *Transitional* 2000 4000
 - *Turbulent* > 4000


Velocity Profile and Reynolds Number

- Not all molecules in the pipe flow at the same velocity
- *Molecules near the pipe wall move* slower; molecules in the center of the pipe move faster


Velocity Profile and Reynolds Number


- Laminar Flow Regime
 - Molecules move straight down pipe



- Turbulent Flow Regime
 - Molecules migrate throughout pipe

Velocity Profile and Reynolds Number * Transitional Flow Regime * Molecules exhibit both laminar and turbul

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserve

Velocity Profile and Reynolds Number

- Many flowmeters require a good velocity profile to operate accurately
- Obstructions in the piping system can distort the velocity profile
 - Elbows, tees, fittings, valves

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Velocity Profile and Reynolds Number

*A distorted velocity profile can introduce significant errors into the measurement of most flowmeters

Velocity Profile (distorted)

27	
<i>4 1</i>	

Velocity Profile and Reynolds Number

- Good velocity profiles can be developed
 - Straight run upstream and downstream
 - No fittings or valves
 - Upstream is usually longer and more important
 - Flow conditioner
 - Locate control valve downstream of flowmeter

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Fluid Flow Fundamentals

- Temperature
- Pressure
- Density and Fluid Expansion
- Types of Flow
- Inside Pipe Diameter
- Viscosity
- Reynolds Number and Velocity Profile
- Hydraulic Phenomena

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Hydraulic Phenomena

- Vapor pressure is defined as the pressure at which a liquid and its vapor can exist in equilibrium
 - The vapor pressure of water at 100°C is atmospheric pressure (1.01325 bar abs) because water and steam can coexist

Hydraulic Phenomena

- A saturated vapor is in equilibrium with its liquid at its vapor pressure
 - Saturated steam at atmospheric pressure is at a temperature of 100°C

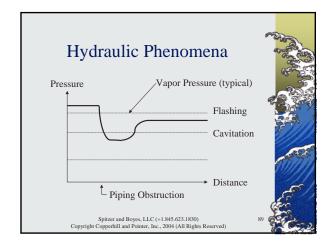
Hydraulic Phenomena

- A superheated vapor is a saturated vapor that is at a higher temperature than its saturation temperature
 - Steam at atmospheric pressure that is at 150°C is a superheated vapor with 50°C of superheat

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Hydraulic Phenomena

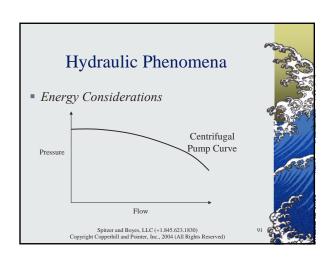
- Flashing is the formation of gas (bubbles) in a liquid after the pressure of the liquid falls below its vapor pressure
 - Reducing the pressure of water at 100°C below atmospheric pressure (say 0.7 bar abs) will cause the water to boil

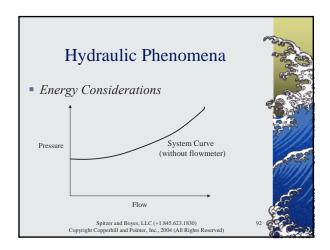

Hydraulic Phenomena

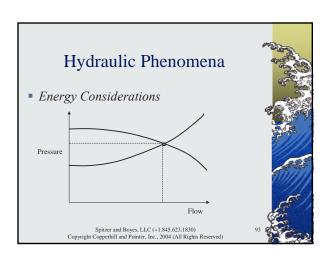
- Cavitation is the formation and subsequent collapse of gas (bubbles) in a liquid after the pressure of the liquid falls below and then rises above its vapor pressure
 - Can cause severe damage in pumps and valves

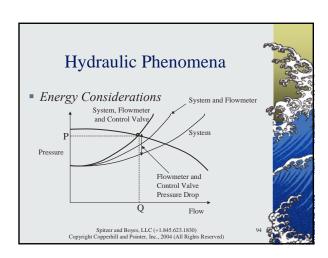
Spitzer and Boyes, LLC (+1.845.623.1830)

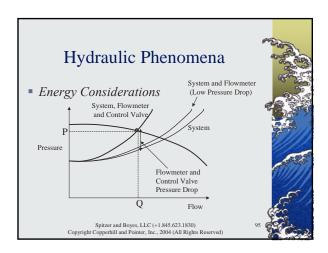
Converget Connectial and Pointer, Inc. 2004 (All Rights Reserve

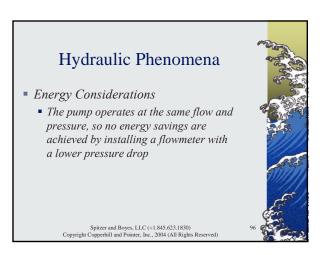


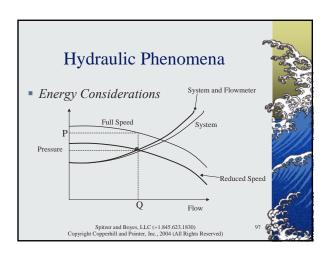


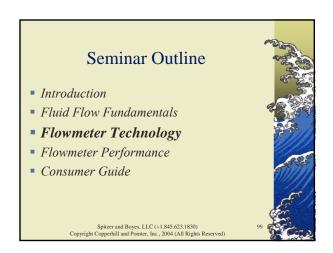

Hydraulic Phenomena


- Energy Considerations
 - Claims are sometimes made that flowmeters with a lower pressure drop will save energy









Hydraulic Phenomena • Energy Considerations • Operating the pump at a reduced speed generates the same flow but requires a lower pump discharge pressure • Hydraulic energy generated by the pump better matches the load • Energy savings are proportional to the cube of the speed Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Coppethill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Flowmeter Technology

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Installation
- Accessories
- Other Flowmeter Technologies

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Principle of Operation

- A piping restriction is used to develop a pressure drop that is measured and used to infer fluid flow
 - Primary Flow Element
 - Transmitter (differential pressure)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Bernoulli's equation states that energy is approximately conserved across a constriction in a pipe
 - Static energy (pressure head)
 - Kinetic energy (velocity head)
 - Potential energy (elevation head)

Principle of Operation

- Bernoulli's equation
 - $P/(\rho \cdot g) + \frac{1}{2}v^2/g + y = constant$
 - $P = absolute\ pressure$
 - $\rho = density$
 - g = acceleration of gravity
 - $v = fluid\ velocity$
 - y = elevation

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Equation of Continuity
 - $Q = A \cdot v$
 - Q = flow (volumetric)
 - $A = cross{-}sectional \ area$
 - $v = fluid\ velocity\ (average)$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Apply the equation of continuity and Bernoulli's equation for flow in a horizontal pipe
 - Acceleration of gravity is constant
 - No elevation change

Principle of Operation

- Apply Bernoulli's equation upstream and downstream of a restriction
- $P_1 + \frac{1}{2} \rho \cdot v_1^2 = P_2 + \frac{1}{2} \rho \cdot v_2^2$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Principle of Operation

• Solve for the pressure difference and use the equation of continuity

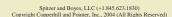
$$(P_1 - P_2) = \frac{1}{2} \rho \cdot v_2^2 - \frac{1}{2} \rho \cdot v_1^2$$
$$= \frac{1}{2} \rho \left[v_2^2 - v_1^2 \right]$$

$$= \frac{1}{2} \rho \left[(A_1/A_2)^2 - 1 \right] \cdot v_1^2$$

$$= \frac{1}{2} \rho \left[(A_1/A_2)^2 - 1 \right] \cdot Q^2/A_1^2$$

= $constant \cdot \rho \cdot Q^2$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)



Principle of Operation

- $\Delta P = constant \cdot \rho \cdot Q^2$
 - Fluid density affects the measurement
 - Pressure drop is proportional to the square of the flow rate
 - Squared output flowmeter
 - $\blacksquare \ Double \ the \ flow... \ four \ times \ the \ differential$

- $Q = constant \cdot (\Delta P/\rho)^{1/2}$
 - Fluid density affects the measurement
 - Flow rate is proportional to the square root of the differential pressure produced
 - Often called "square root flowmeter"

Principle of Operation

- Q is proportional to $1/\rho^{\frac{1}{2}}$
- Fluid density affects the measurement by approximately -1/2% per % density change

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Liquid density changes are usually small
- Gas and vapor density changes can be large and may need compensation for accurate flow measurement
 - Flow computers
 - Multivariable differential pressure transmitters

_		
$\boldsymbol{\gamma}$,	_
		- 1

Problem

- What is the effect on a differential pressure flowmeter when the operating pressure of a gas is increased from 6 to 7 bar?
 - To simplify calculations, assume that atmospheric pressure is 1 bar abs

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- The ratio of the densities is (7+1)/(6+1)= 1.14
 - The density of the gas increased 14 percent
- The flow measurement is proportional to the inverse of the square root of the density which is (1/1.14)½ = 0.94
 - The flow measurement will be approximately 6 percent low

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

Problem

- Calculate the differential pressures produced at various percentages of full scale flow
 - Assume 0-100% flow corresponds to 0-100 differential pressure units

\boldsymbol{c}
~

Differential pressure as a function of flow

 Flow
 ΔP

 100 %
 100 dp units

 50 %
 25 " "

 20 %
 4 " "

 10 %
 1 " "

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Low flow measurement can be difficult
 - For example, only ¼ of the differential pressure is generated at 50 percent of the full scale flow rate. At 10 percent flow, the signal is only 1 percent of the differential pressure at full scale.

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

Problem

- What is the differential pressure turndown for a 10:1 flow range?
 - 0.1² = 0.01, so at 10% flow the differential pressure is 1/100 of the differential pressure at 100% flow
 - The differential pressure turndown is 100:1

- Noise can create problems at low flow rates
 - 0-10% flow corresponds to 0-1 dp units
 - 90-100% flow corresponds to 81-100% dp

Principle of Operation

- Noise at low flow rates can be reduced by low flow characterization
 - Force to zero
 - *Linear relationship at low flow rates*

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Principle of Operation

- Square root relationship generally applies when operating above the Reynolds number constraint for the primary flow element
 - Operating below the constraint causes the flow equation to become linear with differential pressure (and viscosity)
 - Applying the incorrect equation will result in flow measurement error

4		1
71		
-	ı	١

Problem

- If the Reynolds number at 100% flow is 10,000, what is the turndown for accurate measurement if the primary flow element must operate in the turbulent flow regime?
 - 10,000/4000, or 2.5:1

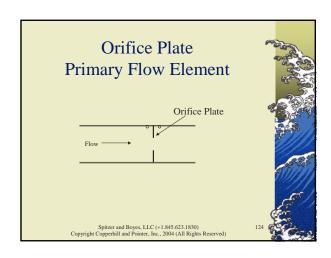
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

ate at

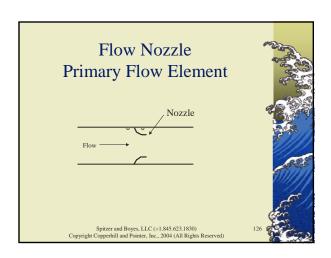
Principle of Operation

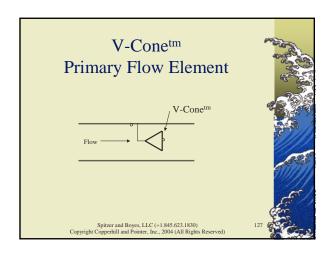
Problem

- Will the flowmeter operate at 10% flow?
 - It will create a differential pressure...
 however, Reynolds number will be below the
 constraint, so the flow measurement will not
 conform to the square root equation (and
 will not be accurate)


Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)



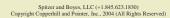

Differential Pressure Flowmeter Technology


- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Installation
- Accessories
- Other Flowmeter Technologies

Differential Pressure Flowmeter Technology • Principle of Operation

- Primary Flow Elements
- Transmitter Designs
- Installation
- Accessories
- Other Flowmeter Technologies

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)


Differential Pressure Sensor Designs

- Capacitance
- Differential Transformer
- Force Balance
- Piezoelectric
- Potentiometer
- Silicon Resonance
- Strain Gage

Differential Pressure Transmitter Designs

- Analog
 - Electrical components subject to drift
 - Ambient temperature
 - Process temperature
 - Two-wire design

Differential Pressure Transmitter Designs

- Digital
 - Microprocessor is less susceptible to drift
 - Ambient temperature
 - Process temperature
 - Temperature characterization in software
 - Remote communication (with HART)
 - Two-wire design

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Transmitter Designs

- Fieldbus
 - Microprocessor is less susceptible to drift
 - Ambient temperature
 - Process temperature
 - Temperature characterization in software
 - Remote communication
 - Issues with multiple protocols
 - Multi-drop wiring

Differential Pressure Transmitter Designs

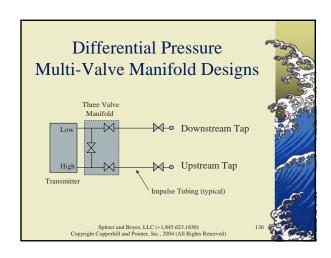
- Mechanical design
 - Spacing between connections
 - Orifice flange taps
 - Traditional
 - Larger diaphragm/housing
 - Coplanar
 - Smaller diaphragm/housing

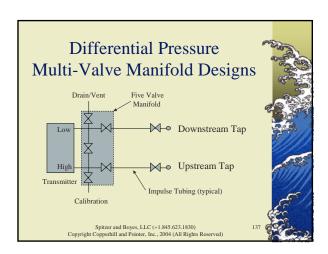
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Transmitter Designs

- High static pressure design
 - Typically lower performance
- Safety design
 - Automatic diagnostics
 - Redundancy
 - Reliable components

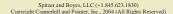
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)


Differential Pressure Multi-Valve Manifold Designs


- Multi-valve manifolds are used to isolate the transmitter from service for maintenance and calibration
 - One-piece integral assembly
 - Mounted on transmitter

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

45



Differential Pressure Multi-Valve Manifold Designs Removal from service Open bypass valve (hydraulic jumper) Close block valves Be sure to close bypass valve to calibrate Use calibration and vent/drain valves (five valve manifold) Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Coppethill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Multi-Valve Manifold Designs

- Return to service
 - Open bypass valve (hydraulic jumper)
 - Open block valves
 - Close bypass valve

Differential Pressure Multi-Valve Manifold Designs

- Removal and return to service procedure may be different when flow of fluid in tubing/transmitter is dangerous
 - High pressure superheated steam

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Flowmeter Technology

- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Installation
- Accessories
- Other Flowmeter Technologies

- The quality of measurement is predicated on:
 - Proper installation of the primary flow element
 - Proper operation of the primary flow element (for example, Reynolds number)
 - Accurate measurement of the differential pressure

Spitzer and Boyes, LLC (+1.845.623.1830)

Converget Connectial and Pointer, Inc. 2004 (All Rights Reserved)

142

Installation

- Fluid Characteristics
- Piping and Hydraulics
- Impulse Tubing
- Electrical
- Ambient Conditions
- Calibration

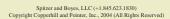
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 143 ලද්ද

Fluid Characteristics

- Reynolds number within constraints
- Fluid must not plug impulse tubing
 - Solids
 - Purge fluids
 - Diaphragm seals (added measurement error)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 144

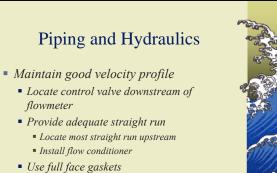
Fluid Characteristics


- Within accurate flow range
- Corrosion and erosion
 - Flowmeter
 - Exotic (thin) diaphragm materials
- Coating
- Gas in liquid stream
- *Immiscible fluids*

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Piping and Hydraulics

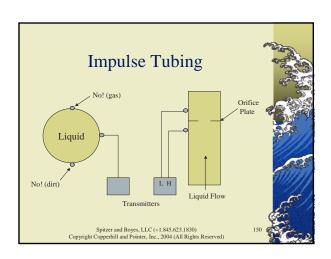
- For liquids, keep flowmeter full
 - Hydraulic design
 - Vertical riser preferred
 - Avoid inverted U-tube
 - Be careful when flowing by gravity

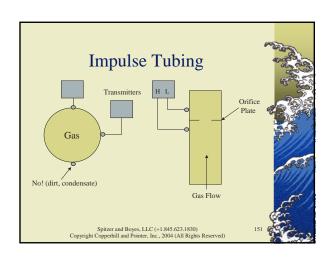

Piping and Hydraulics

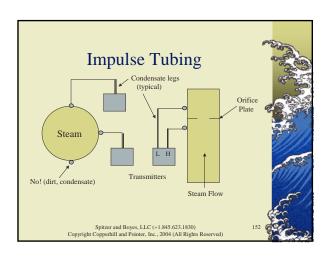
- For gases, avoid accumulation of liquid
 - Hydraulic design
 - Vertical riser preferred
 - Avoid U-tube

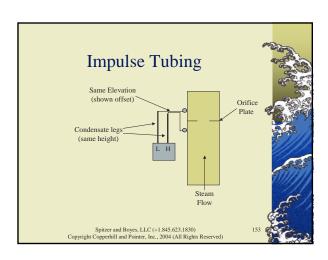
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

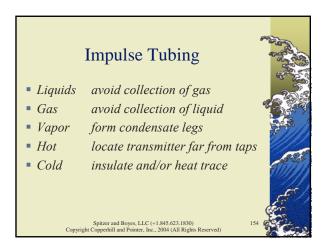
49


Piping and Hydraulics


Wetted parts compatible with fluid


Pipe quality


Use smooth round pipe with known inside diameter, wall thickness, and material

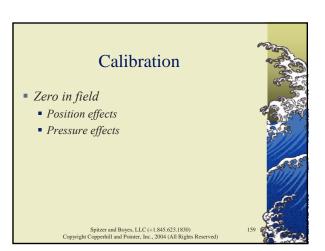

Purchasing the flowmeter and piping section controls pipe quality

Electrical

- Wiring
 - Two-wire design (no power conduit)
 - Fieldbus reduces wiring
- Avoid areas of electrical noise
 - Radios
 - High voltages
 - Variable speed drives

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

155


Ambient Conditions

- Outdoor applications (-40 to 80°C)
 - Avoid direct sunlight (especially low ranges)
 - Support transmitter well
- Hazardous locations
 - Some designs may be general purpose

Calibration Internal alignment (digital transmitters) Pressure source Digital indication in transmitter Digital output indication in transmitter Analog signal Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Coppethill and Pointer, Inc., 2004 (All Rights Reserved)

Differential Pressure Flowmeter Technology

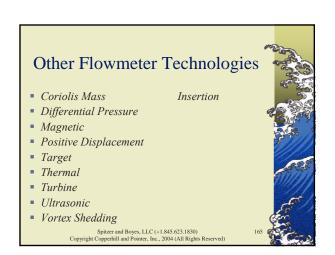
- Principle of Operation
- Primary Flow Elements
- Transmitter Designs
- Installation
- Accessories
- Other Flowmeter Technologies

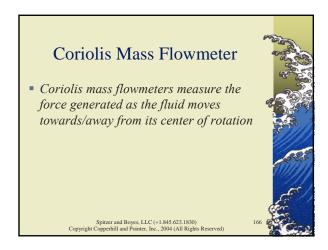
Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

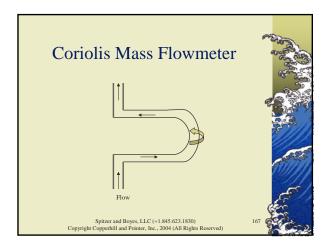
Accessories

- Wetted parts
 - Diaphragm (thin)
 - Flanges
 - Drain/vent valves
 - Materials
 - Stainless steel, Monel, Hastelloy, tantalum
 - O-rings/gaskets (TFE, Vitontm)

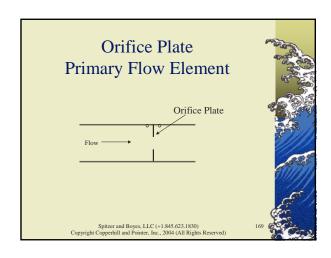
Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

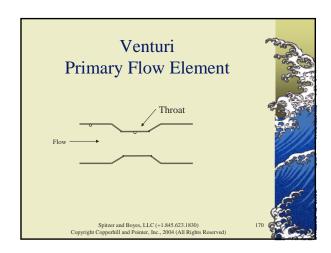

Accessories

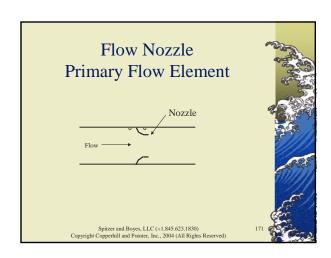

- Non-wetted parts
 - Fill fluids
 - Silicone, halocarbon
 - External housing

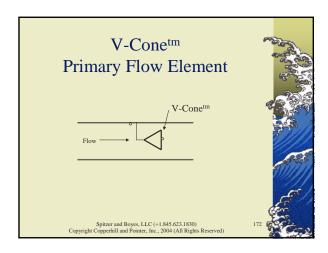


Accessories Transmitter NEMA 4X and IP67 (IP68) Hazardous locations Intrinsically safe HART, Foundation Fieldbus, Profibus Mounting bracket


Differential Pressure Flowmeter Technology Principle of Operation Primary Flow Elements Transmitter Designs Installation Accessories Other Flowmeter Technologies Spitzer and Boyes, LLC (+1.845,623.1830) Copyright Coppedial and Pointer, Inc., 2004 (All Rights Reserved)



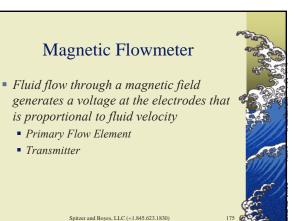


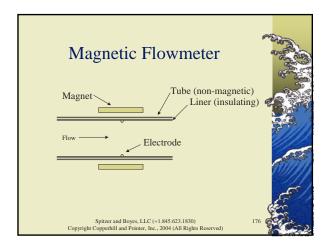


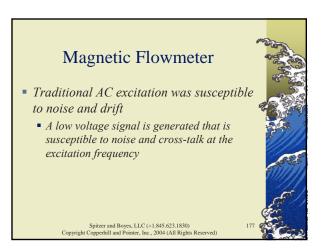
Differential Pressure Flowmeter • A piping restriction is used to develop a pressure drop that is measured and used to infer fluid flow • Primary Flow Element • Transmitter (differential pressure)

Differential Pressure Flowmeter

- Pressure drop is proportional to the square of the fluid flow rate
 - $\Delta p \alpha Q^2$ or $Q \alpha sqrt(\Delta p)$
 - Double the flow... four times the differential


Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)


Differential Pressure Flowmeter


- Low flow measurement can be difficult
 - For example, only ¼ of the differential pressure is generated at 50 percent of the full scale flow rate. At 10 percent flow, the signal is only 1 percent of the differential pressure at full scale.

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

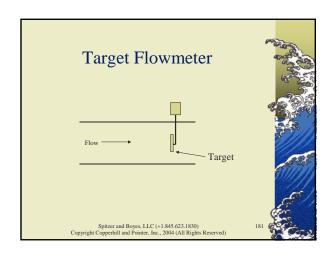
Magnetic Flowmeter

- Pulsed DC excitation reduces drift by turning the magnet on and off
 - Noise (while the magnet is off) is subtracted from signal and noise (while the magnet is on) to reduce the effects of noise and crosstalk
 - Response time can be compromised

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Positive Displacement Flowmeter

- Positive displacement flowmeters measure flow by repeatedly entrapping fluid within the flowmeter
 - Moving parts with tight tolerances
 - Bearings
 - Many shapes

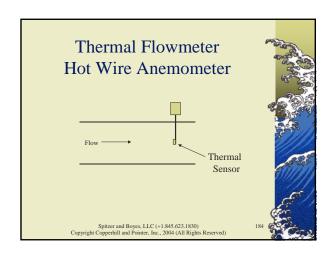

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Target Flowmeter

 Target flowmeters determine flow by measuring the force exerted on a body (target) suspended in the flow stream

Thermal Flowmeter

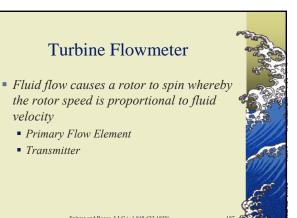
- Thermal flowmeters use the thermal properties of the fluid to measure flow
 - Hot Wire Anemometer
 - Thermal Profile

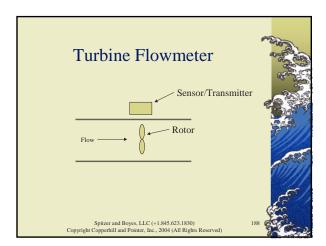

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

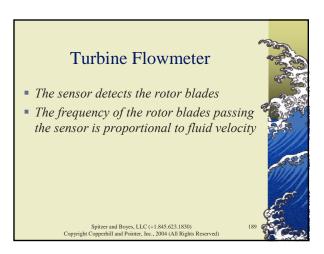
182

Thermal Flowmeter Hot Wire Anemometer

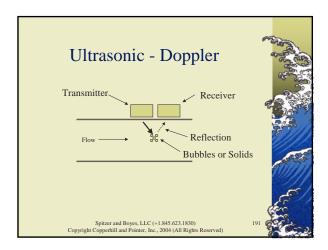
 Hot wire anemometers determine flow by measuring the amount of energy needed to heat a probe whose heat loss changes with flow rate

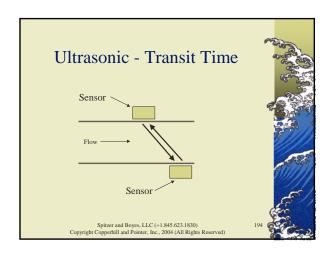


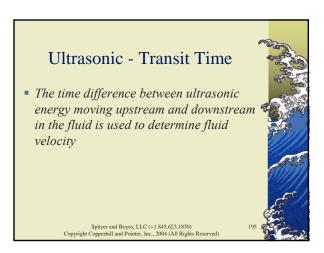


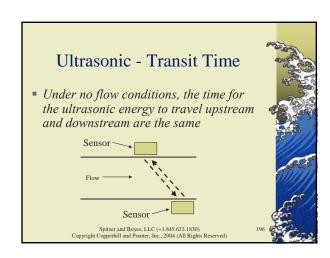

Thermal Flowmeter Thermal Profile

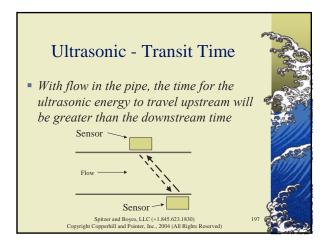

• Thermal profile flowmeters determine flow by measuring the temperature difference that results in a heated tube when the fluid transfers heat from the upstream portion to the downstream portion of the flowmeter

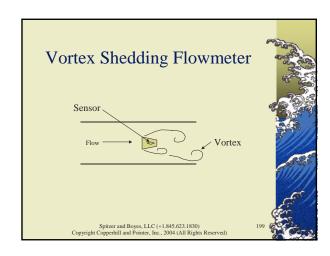








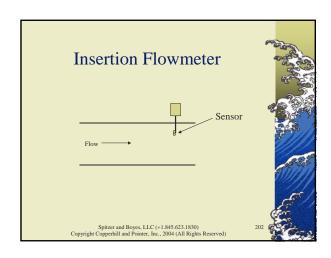

Ultrasonic - Doppler Under no flow conditions, the frequencies of the ultrasonic beam and its reflection are the same With flow in the pipe, the difference between the frequency of the beam and its reflection increases proportional to fluid velocity Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Coppetibil and Pointer, Inc., 2004 (All Rights Reserved)



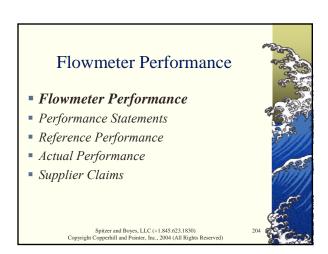
Vortex Shedding Flowmeter A bluff body in the flow stream creates vortices whereby the number of vortices is proportional to the fluid velocity Primary Flow Element Transmitter

Vortex Shedding Flowmeter

- The sensing system detects the vortices created
- The frequency of the vortices passing the sensing system is proportional to fluid velocity

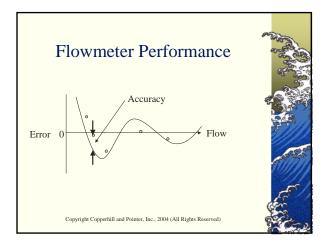

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

200


Insertion Flowmeter

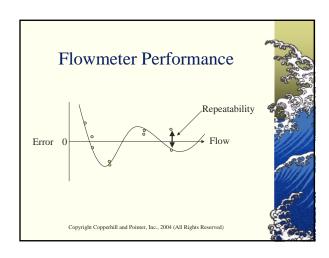
- Insertion flowmeter infer the flow in the entire pipe by measuring flow at one or more strategic of locations in the pipe
 - Differential Pressure
 - Magnetic
 - Target
 - Thermal
 - Turbine
 - Vortex

Seminar Outline Introduction Fluid Flow Fundamentals Flowmeter Technology Flowmeter Performance Consumer Guide

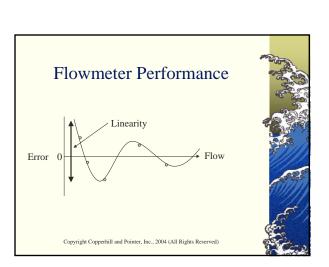


Flowmeter Performance

 Accuracy is the ability of the flowmeter to produce a measurement that corresponds to its characteristic curve


Spitzer and Boyes, LLC (+1.845.623.1830)

Flowmeter Performance


 Repeatability is the ability of the flowmeter to reproduce a measurement each time a set of conditions is repeated

Flowmeter Performance

• Linearity is the ability of the relationship between flow and flowmeter output (often called the characteristic curve or signature of the flowmeter) to approximate a linear relationship

Flowmeter Performance

• Flowmeter suppliers often specify the composite accuracy that represents the combined effects of repeatability, linearity and accuracy

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperbill and Pointer, Inc., 2004 (All Rights Reserver)

Flowmeter Performance

Composite Accuracy (in Flow Range)

Flow Range

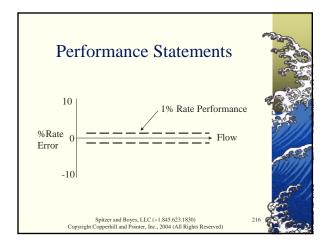
Flow Range

Flowmeter Performance

- Flowmeter Performance
- Performance Statements
- Reference Performance
- Actual Performance
- Supplier Claims

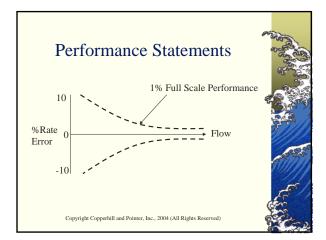
Performance Statements

- Percent of rate
- Percent of full scale
- Percent of meter capacity (upper range limit)
- Percent of calibrated span

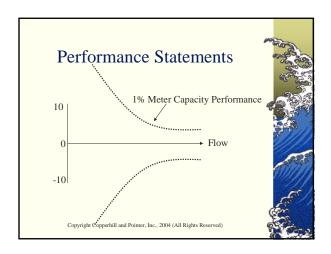

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer. Inc., 2004 (All Rights Reserve

214

Performance Statements


- 1% of rate performance at different flow rates with a 0-100 unit flow range
 - 100% flow $\rightarrow 0.01 \cdot 100$ 1.00 unit
 - 50% flow $\rightarrow 0.01 \cdot 50$ 0.50 unit
 - 25% flow $\rightarrow 0.01 \cdot 25$ 0.25 unit
 - 10% flow > 0.01•10 0.10 unit

- 1% of full scale performance at different flow rates with a 0-100 unit flow range
 - 100% flow $\rightarrow 0.01 \cdot 100$ 1 unit = 1% rate
 - 50% flow $\rightarrow 0.01 \cdot 100$ 1 unit = 2% rate
 - 25% flow $\rightarrow 0.01 \cdot 100$ 1 unit = 4% rate
 - 10% flow $\Rightarrow 0.01 \cdot 100$ 1 unit = 10% rate

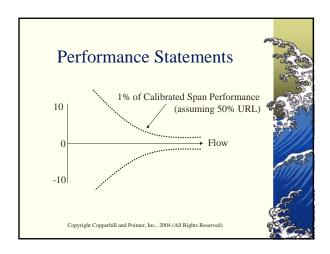

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 217

Performance Statements

- 1% of meter capacity (or upper range limit) performance at different flow rates with a 0-100 unit flow range (URL=400)
 - 100% flow $\rightarrow 0.01 \cdot 400$ 4 units = 4% rate
 - 50% flow $\rightarrow 0.01$ •400 4 units = 8% rate
 - 25% flow $\Rightarrow 0.01 \cdot 400$ 4 units = 16% rate
 - 10% flow $\rightarrow 0.01 \cdot 400$ 4 units = 40% rate

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 21

 Performance expressed as a percent of calibrated span is similar to full scale and meter capacity statements where the absolute error is a percentage of the calibrated span



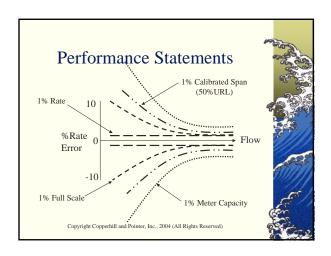
21

Performance Statements

- 1% of calibrated span performance at different flow rates with a 0-100 unit flow frange (URL=400, calibrated span=200)
 - 100% flow $\Rightarrow 0.01 \cdot 200$ 2 units = 2% rate
 - 50% flow $\rightarrow 0.01 \cdot 200$ 2 units = 4% rate
 - 25% flow $\Rightarrow 0.01 \cdot 200$ 2 units = 8% rate
 - 10% flow $\Rightarrow 0.01 \cdot 200$ 2 units = 20% rate

- A calibrated span statement becomes a full scale statement when the instrument is calibrated to full scale
- A calibrated span statement becomes a meter capacity statement when the instrument is calibrated at URL

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)


224

Performance Statements

 Performance specified as a percent of rate, percent of full scale, percent of meter capacity, and percent of calibrated span are different

- Different and multiple performance statements may apply
 - 0.05% full scale typical transmitter 0.10% full scale low range transmitter
 - 0.50% rate 50-100% full scale 0.25% full scale 10-50% full scale

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

erved)

Performance Statements

- Performance statements apply over a range of operation
- Turndown is the ratio of the maximum flow that the flowmeter will measure within the stated accuracy to the minimum flow that can be measured within the stated accuracy

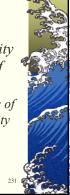
- Performance statements can be manipulated because their meaning may not be clearly understood
- Technical assistance may be needed to analyze the statements

Spitzer and Boyes, LLC (+1.845.623.1830)

Convright Connerhill and Pointer. Inc. 2004 (All Rights Reserved)

2229

Flowmeter Performance


- Flowmeter Performance
- Performance Statements
- Reference Performance
- Actual Performance
- Supplier Claims

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Reference Performance

- Reference performance is the quality of measurement at a nominal set of operating conditions, such as:
 - Water at 20°C in ambient conditions of 20°C and 50 percent relative humidity
 - Long straight run
 - Pulse output

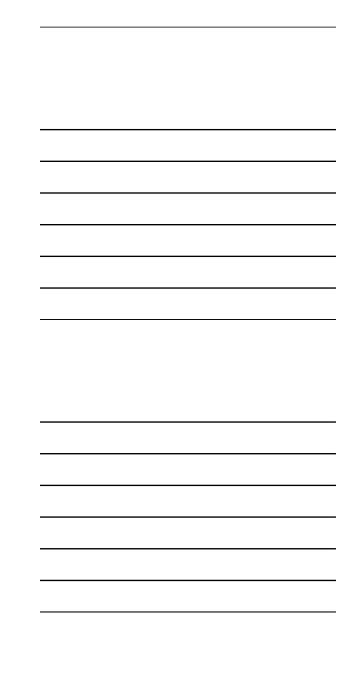
,	7	,	_
	•		- 1

 In the context of the industrial world, reference performance reflects performance under controlled laboratory conditions

... 6

Reference Performance

 Performance of the primary flow element and the transmitter must be taken into account to determine performance of flowmeter system


> Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

233 🕝

Reference Performance

- Hypothetical primary flow element
 - 1% rate $R_d > 4000$ and Q > 10% FS
 - Otherwise undefined
 - Assumes correct design, construction, installation, calibration, and operation

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 2

- Hypothetical differential pressure transmitter
 - 0.10% calibrated span
 - Calibrated for 0-100 units
 - Factory calibrated at upper range limit (URL) of 400 units

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Reference Performance

Problem

• What is the measurement error associated with the performance of the hypothetical differential pressure transmitter?

> Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Reference Performance

• The calibrated span is 400, so the differential pressure measurement error is 0.10% of 400, or 0.4 units at all differential pressures

7	
•	

Problem

• What is the flow measurement error associated with the performance of the hypothetical differential pressure transmitter?

Reference Performance

<u>Flow</u> <u>L</u>	Diff. Press	ure Flow Measurement Error
100	100	$1-\sqrt{(100\pm0.4)/100}$ or 0.2 %rate
50	25	$1-\sqrt{(25\pm0.4)/25}$ or 0.8 "
25	6.25	$1-\sqrt{(6.25\pm0.4)/6.25}$ or 3.2 "
10	1.00	$1-\sqrt{(1.00\pm0.4)/1.00}$ or 18-23 "
C		r and Boyes, LLC (+1.845.623.1830) 239 hill and Pointer, Inc., 2004 (All Rights Reserved)

Reference Performance

Problem

• What is the flow measurement error associated with the performance of the flow measurement system (primary flow element and differential pressure transmitter)?

- System performance is the statistical combination of the errors associated with the components (primary flow element and transmitter)
 - System performance is <u>not</u> the mathematical sum of the individual errors

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) al d

Flowmeter Performance

- Flowmeter Performance
- Performance Statements
- Reference Performance
- Actual Performance
- Supplier Claims

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Actual Performance

- Operating Effects
 - Ambient conditions
 - \blacksquare Humidity
 - Precipitation
 - Temperature
 - \blacksquare Pressure
 - Direct sunlight
 - Mounting Orientation
 - Stability (Drift)

Actual Performance

- Ambient Humidity and Precipitation
 - Many flowmeters are rated to 10-90% relative humidity (non-condensing)
 - Outdoor locations are subject to 100% relative humidity and precipitation in various forms

Spitzer and Boyes, LLC (+1.845.623.1830)

Converight Connerhill and Pointer, Inc. 2004 (All Rights Reserver)

Actual Performance

- Ambient Temperature and Pressure
 - Information available to evaluate actual performance
 - Temperature effect
 - Pressure effect
 - Effects can be significant, even though the numbers seem small

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 24

Actual Performance

Example

- The error (at 25 percent of scale and a 0°C ambient) associated with a temperature effect of 0.01% full scale per °C can be calculated as:
 - 0.01*(20-0)/25, or 0.80% rate

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) nd 2

-		
-		

Actual Performance

- Reference accuracy performance statements are often discussed
- Operating effects, such as temperature and pressure effects are often only mentioned with prompting
 - Progressive disclosure

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) e g 247

Actual Performance

- Ambient Direct Sunlight
 - Can cause temporary calibration shift
 - Low range transmitters

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 48

Actual Performance

- Mounting Orientation
 - Bench calibration vs. field calibration
 - Up to 5 mbar (2 inch WC) shift

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 249

•		
•		
•		
ı		
•		
•		
•	 	
,	 	
•		
•		

Actual Performance

- Stability
 - Drift over time
 - Usually faster at beginning of period
 - Specifications difficult to compare
 - Different ways over different periods of time

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperbill and Pointer, Inc., 2004 (All Rights Reserver)

Actual Performance

Combining Operating Effects

Estimated Error = $\sqrt{error_1^2 + error_2^2 + error_3^2 + ...}$

where the errors in like units

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Flowmeter Performance

- Flowmeter Performance
- Performance Statements
- Reference Performance
- Actual Performance
- Supplier Claims

- High Rangedown
 - Rangedown is the ratio of the maximum to minimum full scale ranges to which the differential pressure transmitter can be calibrated
 - Sometimes called turndown

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Supplier Claims

Example

- The rangedown a differential pressure transmitter that can be calibrated from 0-12.5 mbar to 0-1000 mbar is:
 - 1000/12.5, or 80:1

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Claims

- *The accuracy for these ranges is:*
 - 0-12.5 mbar

0.425% of set span

■ 0-1000 mbar

0.075% of set span

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

85

• 0-1000 mbar (0.075% of set span)

		٦	a
<u>Flow</u>	<u>Differential</u> <u>Error</u>	Flow Error	
	<u>Pressure</u>		
100%	1000 mbar 0.75 mbar	0.04% rate	
50%	250 mbar 0.75 mbar	0.15% rate	
20%	40 mbar 0.75 mbar	0.94% rate	
			(

Supplier Claims

■ 0-12.5 mbar (0.425% of set span)

<u>Flow</u>	<u>Differential</u>	<u>Error</u>	Flow Error
	<u>Pressure</u>		
100%	12.500 mbar	0.53 mbar	2.14% rate
50%	3.125 mbar	0.53 mbar	8.87% rate
20%	0.500 mbar	0.53 mbar	undefined
			(
Cop	Spitzer and Boyes, LL yright Copperhill and Pointer,		Reserved)

Supplier Claims

- High Turndown
 - Turndown is the ratio of the maximum to minimum differential pressures that the differential pressure transmitter can measure within the stated accuracy

• 0-400 mbar (0.075% of set span)

<u>Flow</u>	<u>Differential</u> <u>Error</u> Pressure	Flow Error
100%	400 mbar 0.3 mba	ar 0.04% rate
50%	100 mbar 0.3 mba	ır 0.15% rate
20%	16 mbar 0.3 mba	ır 0.94% rate
10%	4 mbar 0.3 mba	ır 3.82% rate

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) 259

Supplier Claims

- High Accuracy
 - High accuracy claims often refer to high flow rates at reference conditions and imply high accuracy at all flow rates

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Claims

• 0-400 mbar (0.075% of set span)

<u>Flow</u>	<u>Differential</u>	<u>Error</u>	Flow Error
	<u>Pressure</u>		
100%	400 mbar	$0.3\ mbar$	0.04% rate
50%	100 mbar	$0.3\ mbar$	0.15% rate
20%	16 mbar	$0.3\ mbar$	0.94% rate
10%	4 mbar	$0.3\ mbar$	3.82% rate

- High Accuracy
 - Often disguised by omission
 - "0.075% accuracy" (omits rate, full scale, meter capacity, calibrated span)
 - Reducing full scale can degrade accuracy of some transmitters

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Claims

- High Accuracy
 - Accuracy generally does not take operating effects into account
 - Temperature effect
 - Pressure effect
 - Other effects
 - Humidity, precipitation, sunlight, stability

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Claims

- Reduced Calibration
 - *Improved stability (drift) specifications*
 - Operating effects can be larger than stability

Seminar Outline

- Introduction
- Fluid Flow Fundamentals
- Flowmeter Technology
- Flowmeter Performance
- Consumer Guide

Spitzer and Boyes, LLC (+1.845.623.1830)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserve

Consumer Guide

User Equipment Selection Process

- Learn about the technology
- Find suitable vendors
- Obtain specifications
- Organize specifications
- Evaluate specifications
- Select equipment

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Consumer Guide

User Equipment Selection Process

• Performing this process takes time and therefore costs money

Consumer Guide

User Equipment Selection Process

 Haphazard implementation with limited knowledge of alternatives does not necessarily lead to a good equipment selection

Consumer Guide

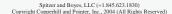
Guide Provides First Four Items

- Learn about the technology
- Find suitable vendors
- Obtain specifications
- Organize specifications
- Evaluate specifications
- Select equipment

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Consumer Guide

Guide Provides First Four Items


- Information focused on technology
- Comprehensive lists of suppliers and equipment

Consumer Guide

Guide Provides First Four Items

- Significant specifications
- Lists of equipment organized to facilitate evaluation

Consumer Guide

User Equipment Selection Process

- By providing the first four items, the Consumer Guides:
 - make technical evaluation and equipment selection easier, more comprehensive, and more efficient

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Consumer Guide

User Equipment Selection Process

- By providing the first four items, the Consumer Guides:
 - allow selection from a larger number of suppliers
 - simplifies the overall selection process

-	

Consumer Guide

- Supplier Data and Analysis
- Attachments
 - Flowmeter categories
 - Availability of selected features
 - Models grouped by performance

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

274

Supplier Data and Analysis

- Ambient Limits
 - Temperature (-20 to 80°C typical)
 - Humidity, precipitation
 - NEMA 4X, IP67 (IP68 available)
 - Hazardous locations
 - Non-incendive, explosion-proof, intrinsically safe

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved) afe

Supplier Data and Analysis

- Process Operating Limits
 - Pressure limit
 - Temperature limit (100-149°C)
 - Composition
 - Limited by materials of construction

Supplier Data and Analysis

- Materials of Construction
 - Wetted parts and materials similar for most major suppliers
 - Specials (e.g., gold diaphragm for hydrogen)
 - Some designs have O-rings/gaskets

Spitzer and Boyes, LLC (+1.845.623.1830)

Converght Connerhill and Pointer, Inc., 2004 (All Rights Reserved)

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved

Supplier Data and Analysis

- Transmitter
 - Two-wire loop powered device
 - HART, Fieldbus
 - Alarms, totalization
 - $\blacksquare \ Multivariable$

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Data and Analysis

- Reference Performance
 - Reference accuracy usually includes the effects of linearity, hysteresis, and repeatability
 - Performance may be degraded at smaller spans

Supplier Data and Analysis

- Operating Effects
 - Ambient Temperature
 - Assume 25°C for calculations
 - Process Pressure
 - Assume 7 bar for calculations
 - Transmitter Stability
 - Assume 12 months (1 year)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Supplier Data and Analysis

- Operating Effects
 - Power Supply
 - Typically 0.005% span per volt
 - Neglected in calculations
 - Mounting position effect
 - Neglected in calculations
 - *Humidity, precipitation*

• Neglected in calculations

Spitzer and Boyes, LLC (+1.845.623.1830)
Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Consumer Guide

- Supplier Data and Analysis
- Attachments
 - Availability of selected features
 - Models grouped by performance

Availability of Selected Features

- Suppliers (12 major manufacturers) with factories in:
 - 9 USA
 - 5 China
 - 4 Japan
 - 3 Germany
 - 1 Brazil, France, India, Italy, Singapore

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Availability of Selected Features

- Approvals
 - Hazardous Locations
 - Safety
 - Housing (NEMA/IP rating)

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

Availability of Selected Features

- Ambient and wetted part temperature limits
 - Ambient may be derated in high ambient temperatures

Availability of Selected Features

- Communications
 - HART
 - Foundation Fieldbus
 - Profibus

Review and Questions

- Introduction
- Fluid Flow Fundamentals
- Flowmeter Technology
- Flowmeter Performance
- Consumer Guide

Spitzer and Boyes, LLC (+1.845.623.1830) Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

The Consumer Guide to Differential Pressure Flow Transmitters

Seminar Presented by David W. Spitzer Spitzer and Boyes, LLC

Copyright Copperhill and Pointer, Inc., 2004 (All Rights Reserved)

_